Building for RISC OS, Online

and what makes it tick
Gerph, November 2020

0/120

0. Introduction

November
2020

1/120

Introduction
How I'll do this talk

e | ots of technology, some of which may be alien to you.
e The talk is split into 5 sections, with a chance for some questions between them.

e Slides will be available at the end, together with some other resources.

e |'l| take questions at the end for as long as people want.

2/120

Introduction
What we'll talk about

1. Some background.

2. What JFPatch-as-a-service is.

3. How it works.
4. What powers it.

5. Conclusions.

3/120

1. Background

March
2019

4 /120

Background
Who am I?

e A RISC OS architect and engineer, who's been away from the community for about 15 years.

e | used to do a lot of things with RISC OS, which you can read about on my site if you're interested -
gerph.org/riscos

* I'm not going to talk about that past here.
e | would like to think that | probably know RISC OS in design and execution better than anyone.

5/120

Background
Dear gosh, why?

e What do | want to do with RISC OS and why?

e | et's make something for me, because | can.

6/120

Background
So, you want to use RISC OS, but...

e Development on RISC OS is tedious

e The tools aren't great but they only run on RISC OS... and | don't have a RISC OS system (other
than RPCEmu)

e RISC OS testing is awful
e Most RISC OS projects do ad-hoc testing, rely on users; no automation
e RISC OS is awful for testing

e |[f something goes wrong, you need to hard reboot; no isolation; no security

7 /120

Background

How does the real world do things?

8/120

e Source control !

e Cross compiling

e Managed development environments
e Automated testing of changes

e Feature and regression testing

e Fleets of systems available for use

Background

How can I do this? (1)

Source control:

e Move things to Git, because CVS is so very painful.

9/120

Background

How can I do this? (1)

Source control:

e Move things to Git, because CVS is so very painful.

Tech: GitLab, running on my linux server - it's publicly accessible, but most of the 1000-odd projects are

private.

10/ 120

W Gitlab Projects -

{} itpatch

o Project overview

Gt ails
ACthity
Ralaasas
[Repasitary
¥ Issues
1% Mienge Requests
o CijCh
gt Operations
|t Aradytics
D Wikl
& Snippets
s Membars

L} Satlirgs

& Collapse sidebar

wrrtin w ffabch Ceimds

8 jfpatch &
Froject ID: 1112

@ Riscos Tookchain

< 38 Commits | 2 Bramches &7 0 Tags

El 1 MB Files H 1.8 MB Storage

RISC OF assembder for modules and patches.

masier fipatch = ow

hdd export of the Libraries.
Charles Ferguson authoned & day

B CHANGELDG [CIACD configuration
Hame

&= 'JFFaich

& cresscompile

= et

= oSt

&= testd

= ool

History

ale]

B Add READAE E Add LICEMNSE [Add CORNTRBUTIMNG

La®T Commit

Add calls 1o initialise the APCSCL library in too

Agd export of e Libranes

Agldl SOl TEET SO

Add Rome TEET COoe

Add S0me TEs Cooe.

Aohd Eprca L OF TRl LIEeTaed

=
4

Fired Filp

Bl Add ki

fr Star O Y Fork 0

Wb IDE oy Clong ~

(¥) e38denda G

DerrsE e ohiser

Lagt update
1 month ago
& days ago
I VEEr B
1 y¥Rar ago
1 year ago

b days ago

Background
How can | do this? (2)

Cross compiling:

11/120

Background
How can | do this? (2)

Cross compiling:
e Already had the toolchain ported to 32bit Linux and Windows, back in 2005.

Tech: Port the toolchain to 64bit Linux and 64bit macOS.

charles@laputa ~/pro/RO/mod/ris/Sou/Des/TaskWindow (master)> rm o*/*; riscos-amu
BUILD32=1 ram

riscos-objasm -Stamp -quit -I@ -predefine "BUILD RAM SETL {TRUE}" -apcs
3/32/fpe2/swst/fp -predefine "BUILD ZM SETL {TRUE}" -predefine "No26bitCode SETL {TRUE}"
-predefine "No32bitCode SETL {FALSE}" -predefine "APCS SETS \"APCS-32\"" -0 0z32/Taskman
s/Taskman

ARM AOF Macro Assembler 3.32 (JRF:3.32.38) [07 Mar 2006]
Unrecognised APCS qualifier /fpe2

Unrecognised APCS qualifier /fp

MyDomain = 0000058C

Deprecated form of PSR field specifier used (use cxsf)
riscos-link -rmf -rescan -C++ -o rm32/TaskWindow,ffa 0z32.Taskman
TaskWindow: Module built {RAM}

12/120

Background

How can | do this? (2)

Cross compiling:
e Already had the toolchain ported to 32bit Linux and Windows, back in 2005.

Tech: Port the toolchain to 64bit Linux and 64bit macOS.
Tech: Tool to extract example code from 'Rosetta Code' for testing (https://github.com/gerph/rosettacode)

13/120

Background
How can | do this? (3)

Managed environments:

e How do | get my toolchain? find my libraries? store built components?

14/120

Background

How can | do this? (3)

Managed environments:

e How do | get my toolchain? find my libraries? store built components?

Tech: Artifactory for artifacts, and created some tools for pushing and pulling resources.

.E Arriri:t: y _ "'.Irlrnrnt‘. F:rlrph "

Happily serving 1,461 artifacts b St Me Up T Deploy
Tree Simple % f] webcolours-0.08.14.tar.bz2 o, Download Actions
I libraryall
ik
I b:
B b Infa
W m Flary W 4 tar bz
I cib Ry t rfwed z
W dbsgl LRL to file hittp rph.orgfart b b bea
I g 8.14.tar
m c : N &0 libswe
B minidum [4 By
B cbey
. reva I 01:40
I sysiog Last Madified 19-09-20 23:59:15 +01:00
. Downbpads
B webcolours Eemote Dowrloads

] webcolours-0008.14.tar be2

we ar.bas Dependency Declaration
T IF.0x.
Build Tool: TG vy Gradie St
e b
- d 55 I L]

15/120

Background
How can I do this? (4)

Managed environments: (cont'd)

e What if | don't want to download my toolchain all the time?

16 /120

Background
How can I do this? (4)

Managed environments: (cont'd)

e What if | don't want to download my toolchain all the time?

Tech: Docker RISC OS development environment.

charles@laputa ~/pro/RO/mod/ris/Sou/Des/WindowScroll (master)>

docker run -it --rm -v S$PWD:/riscos-source -v $PWD/build:/riscos-build --workdir /riscos-source
gerph/riscos-build riscos-amu

riscos-cmunge -px -DCMHG -IC:,RISC OSLib: =-26bit -o oz/modhead cmhg/modhead

CMunge 0.77 (JRF:0.77.47) [13 Jun 2006]

Copyright (c) 1999-2006 Robin Watts/Justin Fletcher

Norcroft RISC OS ARM C vsn 5.18 (JRF:5.18.119) [Jun 7 2020]

ARM AOF Macro Assembler 3.32 (JRF:3.32.38) [07 Mar 2006]

0 Errors, 2 Warnings suppressed by -NOWarn

riscos-cc -c -Wec -fa -IC:,RISC OSLib: -zal -apcs 3/26/fpe2/swst/fp -D CONFIG=26 -zM -zpsl
-0 oz/main c/main

Norcroft RISC OS ARM C vsn 5.18 (JRF:5.18.119) [Jun 7 2020]

"c¢/main”, line 564: Warning: '=': cast of 'int' to differing enum

c/main: 1 warning, 0 errors, 0 serious errors

riscos-link -rmf -rescan -C++ -o rm/WindowScroll,ffa oz.main oz.modhead C:o.stubs

17 /120

Background
How can | do this? (5)

Automated testing:

18/120

Background
How can | do this? (5)

Automated testing:

Tech: GitLab Cl triggers on every change - pulls resources from Artifactory, builds, pushes result to Artifactory.

¢ GitLab

.;:}_- Hpatch o o+ build- app-riscos

.0 i« L L
Duraticn: S mimite 1 dessnd
B i CI_PROJECT MAHE = "jipatch® Timaoua: 1h (irem projec E
CI_PROJECT VERSION = "B.8.39 Snar: Linus Docker sunnes 73
CI_BRANCH_VERSTON “§.8. 39"
= L L
’ CI_RAANCE “mayyter®
£1 SHORT BRANCH Job artdecis
It Merge Recquest I) o aritifacts are s labast. TH "
CI_SHA B4 86T 2oRC e TH 1 SH1 32 541 TRE Hhee 133" Thay wrisucty et lalowt. Thay =il
o . i - not be deleted (even § expied) untl
SOURCE_DATE _EPOCH "l681353134"
« € fCD nireee aMilacs are avalable
e L2 1] Dhorwrdoad []
Lhiang lseal RESEC 0% efrv i rofdssnt
Jobs ROBUTLE DIR r Jbuilde/ jeting| - - .
BT 1idiidm |
—_ DOL_CIR 1 SADBUILD_DIR (F 2 -
N Add export of tha Lk
EXFONTS_OTR $ADBUILD BIRSExgart - ——
- INSTALL_GIR SADBUILD BTN Tastall
3 Opera

Pipaling 24907 for aaiter

Extracting e dfcross-tooltester® latest
resalved versles: B.8.8

Extracting resource 'Beildfcross/pyromsnlac” Latest a () busld-app-riscos

resolved wersiea: B.016.1853

Extracting 3 ative-bullid-to ' latest
L olwed w [

Extracting resource 'modules/ras/Basic” latest
£} Setir resolved versiear 1.36.88

Extrac resource ‘madu les/raafobey” latest

radalved werdles: B.43.

teryl Shadld
r — Sbullidsf
F Test the Teal werk
ol 1 &L make TtEsts DUNITOMLS bulldss jestis| fpatch/crasscompl e . . fartitacts results. sl
mpke[1]: Entering directory "/fbuilds/jestisd|fpstchiteal’
riscos-gaslctok e By g ot e HEMEC o F 1D
TGP B
CAAPLSCLY Tdl B defAPCEILT; TR
ri -Basictoken srcMksdu e, 1d1 o C e MkSedu Le, 7 Th
riscoi-Basictokenisie srefPatch, 18l built/CodeiPatch, ik
aRTASAPCECLT veat, T

g ol Hdebs

g i OEs SRusC nde . T eh

19/120

Background
How can | do this? (6)

Feature and regression testing:

e Build programs and test code on other platforms.

20/120

Background
How can | do this? (6)

Feature and regression testing:

e Build programs and test code on other platforms.

e | need a way to test things on RISC OS, too...

Tech: ... we'll come to that later ...

21/120

Background
How can | do this? (7)

Fleets of systems for people to use:

e That seems a stretch, but maybe it's not so hard...

Tech: JFPatch-as-a-service begins that process

22 /120

2. JFPatch-as-a-service

March
2020

23 /120

JFPatch-as-a-Service
Why?

A friend said to me...
I “I can't wait until you csa.announce this and confuse the bejesus out of the RISC OS civilians.”

To which my answer was...

“JFPatch as a service would be a doddle to do right now. A service that nobody asked for, or
needed.”

24 /120

JFPatch-as-a-Service
What is JFPatch?

e |t's a pre-processor for the BASIC assembler.

e |t has its own file format which describes things to patch, or modules to build.

e |t converts these to BASIC files, then runs the BASIC, which does the heavy lifting of assembling.
e |t is, itself, written in BASIC.

e [t was used to write many of my early assembler modules.

25/120

JFPatch-as-a-Service

What is the service?

e Takes its inspiration from Matt Godbolt's Compiler explorer - https:/godbolt.org/

3. & JFPatch as a Service BuILD|

BEE - « - &

26/120

1. Load some source code

Either:

Loads an example file.
Examples, taken from the supporting repository are selectable here.

Starts a new source file.
Once you've finished editing, press the Send button to send the source o the server,

E_\ Uploads a source file or zip archive from your computer.
=t Zip archives may contain source files and any resources needed (for example, a JFPatch source and the binary that it is patching).
Example JFPatch files can be found in a supporting reposi

2. Build the source

Starts the build on the server,

A 'Build output’ window will appear to show what the build is doing. If there is throwback output, this will appear in a separate window.
If the build fails, the source editor can be used to edit the code and fix bugs.
If the build was successful, the download icon will appear.

3. Download the binary

=ty Downloads the built binary.
=1 Binaries are only returmed when the build tool copies them to the clipboard on a successful build.

|

JFPatch-as-a-Service
What can you build with the service? (1)

e Any JFPatch code (now builds 32bit code)

e C code that compiles with the Norcroft compiler
e Pascal code (which will be converted to C and compiled with the Norcroft compiler)

e Perl code
e BASIC assembler

e Objasm assembler.

Tech: All the toolchain is built for 32bit RISC OS, automatically taken from Artifactory when the service is built.

27 /120

28 /120

JFPatch-as-a-Service

What can you build with the service? (2)

C code...

im JFPatch as a Service
R BE - £ > BE

BUILD

Source code

©

- Build tool selected: Horc

Build output
Horcroft RISBC O5 ARM € wan 5.18 (JRF) [Jun 26 2020]
Download available, filetype is Absoluto

JFPalch as a service is nol intended for use in salely critical applications.
No warranly is given for filness for any particular purpose.

Do nol leed after midnight.

JFPatch-as-a-Service
What can you build with the service? (3)

Perl code...

m JFPatch as a Service
BB » £ »

Source code

BUILD

©

Build output

29/120

JFPalch as a service is nol intended for use in salely critical applications.
No warranly is given for filness for any particular purpose.

Do nol leed after midnight.

30/120

JFPatch-as-a-Service

What can you build with the service? (4)

Plain BASIC...

m JFPatch as a Service
BB » £ »

BUILD

Source code

©

PRINT "Hello world'
PRINT I &

mE jREPORTS

- Build tool selec
Frogram renumbered

tad: BASIC Taxt
Hello world

Build output

I am: BASIC ¥ wversion 1.36 © RISCOS Ltd

JFPalch as a service is nol intended for use in salely critical applications.
No warranly is given for filness for any particular purpose.

Do nol leed after midnight.

JFPatch-as-a-Service

What might use the service?

Automated builds can use this:
e LineEditor (BASIC assembler) - https://github.com/philpem/LineEditor

* Nettle (C application) - https://github.com/gerph/Nettle/tree/ci

e CObey (C module) - https:/github.com/gerph/cobey

* ErrorCancel (ObjAsm) - https:/github.com/gerph/errorcancel

e Pico (C command line tool) - https://github.com/gerph/pico
e DDEUMtilsJF (JFPatch module) - https:/github.com/gerph/ddeutilsif

31 /120

JFPatch-as-a-Service

How do you use the service?

Two interfaces, which are documented:
e][SON API.

e \WebSockets API.

Documented on the website: https:/jfpatch.riscos.online/api.htm]
Examples can be found at: https:/github.com/gerph/jfpatch-as-a-service-examples

32/120

JFPatch-as-a-Service
How do you use the JSON API?

Use your favourite HTTP request library. For example, curi:

curl -i -F 'source=@source-file' http://jfpatch.riscos.online/build/json

Get a JSON response:

{

"data": "... data goes here ...",

"filetype": 4092,

"messages': [
"Build tool selected: JFPatch",
"Return code: 0"

1.

"output": [
"JFPatch ARM assembler v2.56\u00df (02 Mar 2020) [Justin Fletcher]\r\n",
"Pre-processing...\r\n",
"Assembling...\r\n"

1,

"re": 0,

"throwback": []

33/120

JFPatch-as-a-Service
How do you use the WebSockets API?

Using the wsclient.py example gives a similar output.

welcome: u'Linking over Internet with RISCOS Pyromaniac Agent version 1.04'
response: u'Source loaded'’

response: u'Started build’

message: u'Build tool selected: JFPatch'

output: u'JFPatch ARM assembler v2.56\xdf (02 Mar 2020) [Justin Fletcher]\r\n'
output: u'Pre-processing...\r\n'

output: u'Assembling...\r\n'’

clipboard: {u'filetype': 4092, u'data’': u'... data goes here ...'}

rc: 0

message: u'Return code: 0

complete: True

Q: What about when you don't have, or can't use, Python?
A: robuild-client handles that.

34/120

JFPatch-as-a-Service
What is the robuild-client?

e Created a build client that can be used to do the heavy work.

e Can be found at https:/github.com/gerph/robuild-client

e Builds for Linux...

35/120

JFPatch-as-a-Service
What is the robuild-client?

e Created a build client that can be used to do the heavy work.

e Can be found at https:/github.com/gerph/robuild-client

e Builds for Linux...

e ... then uses the tool it built to submit its code to the service, to build the RISC OS version.
Tech:

e robuild-client.

e port of JSON parse/creation library.

e WebSockets library.

36 /120

JFPatch-as-a-Service

How does the service know what to do?

e Simple files are recognised by their format.

e Zip files are recognised by their content.

® The .robuild.yami file can control what is actually run.

37 /120

JFPatch-as-a-Service

H

ow does the service know what to do?

e Simple files are recognised by their format.

e Zip files are recognised by their content.

® The .robuird.yami file can control what is actually run.

sYAML 1.0

jobs:
build:
Env defines system variables which will be used within the environment.

Multiple variables may be assigned.
env:

"Sys$Environment”: ROBuild

Commands which should be executed to perform the build.
The build will terminate if any command returns a non-0 return code or an error.
script:

- dir riscos

- !BuildaAll

- Clipboard FromFile client.aif32.riscos-build-online

38/120

3. How The Service Works

March
2020

39/120

How The Service Works

What is the service made of? (1)

Tech:

e Infrastructure - AWS SSL, routing and linux server.

e Front End - Static site, websockets to talk to back end

e Custom CodeMirror colouring - https:/github.com/gerph/CodeMirror/tree/riscos-modes

e Back End - Python REST JSON APl and WebSockets service

e RISC OS Zip file decoding in Python - https://github.com/gerph/python-zipinfo-riscos

e Tools - JFPatch tool, compiler, assembler, linker, amu, etc.

40/120

How The Service Works

What is the service made of? (2)

41/120

JFPatch as a Service: Structural diagram

‘ User through browser

User through tool

AWS CloudFront
CDN and routing

— .

Back end server
®, V4

Veb sockets server

Front end site
Static site content

Internal server

w' Docker container * HTTP for callback from RISC OS

:

‘ £} RISC OS

:

Build tool
JFPatch command line tool

Clipboard data transfer
and Throwback events

& EC2 server

How The Service Works

What runs those services? (1)

server
ISON HTTP API server

42 /120

JFPatch as a Service: Interface control flow

cli wsserver
Simple command line invocation WebSockets API server

How The Service Works

What runs those services? (2)

server
ISON HTTP API server

43 /120

JFPatch as a Service: Interface control flow

cli wsserver
Simple command line invocation WebSockets API server

cli(parse)
Decides on arguments
and streaming type

How The Service Works

What runs those services? (3)

JFPatch as a Service: Interface control flow

server chi wsserver
ISON HTTP APl server Simple command line invocation WebSockets APl server

cli(parse)

Decides on arguments
and streaming type

build
Building process, holding results

44 /120

buildstream result |
| Calls back to the caller with
Streams results to caller the output from the build

How The Service Works

What runs those services? (4)

server
ISON HTTP API server

JFPatch as a Service: Interface control flow

cli wsserver
Simple command line invocation WebSockets API server

cli(parse)
Decides on arguments
and streaming type

L] - It
build buildstream rest .
. + | Calls back to the caller with
Building process, holding results Streams results to caller the output from the build
. server(report)
Shows r&u?tlg{:;%i;? stores files neluns H1 1T response
" JSON or application/riscos

45 /120

How The Service Works

What runs those services? (5)

46 /120

JFPatch as a Service: Builder control flow

result |
Container which holds and routes information
from the build process

How The Service Works

What runs those services? (6)

47 /120

JFPatch as a Service: Builder control flow

result |
Container which holds and routes information
from the build process

l

rosource

Decides what RISC OS file type this is
(C, BASIC, ObjAsm, JFPatch, Pascal, Perl) Yt

~ rozipinfo
Extracts RISC OS filetype information from zip archives

Extracts Zip archives if needed
Stores in a temporary directory

How The Service Works

What runs those services? (7)

48 /120

JFPatch as a Service: Builder control flow

result |
Container which holds and routes information
from the build process

l

rosource
Decides what RISC OS file type this is

Extracts Zip archives if needed
Stores in a temporary directory

(C, BASIC, ObjAsm, JFPatch, Pascal, Perl) Yt

rozipinfo

Extracts RISC OS filetype information from zip archives

makefile ‘
Parses makefiles

—

robuild

Decides what type of build it is
Constructs command lines for |FPatch, cc, etc

-

robuildyaml

FParses robuild.yaml files

—

simpleyaml
Farses YAML without dependencies

How The Service Works

What runs those services? (8)

49 /120

JFPatch as a Service: Builder control flow

result |
Container which holds and routes information
from the build process

l

rosource
Decides what RISC OS file type this is

Extracts Zip archives if needed
Stores in a temporary directory

(C, BASIC, ObjAsm, JFPatch, Pascal, Perl) jag——ppt

rozipinfo

Extracts RISC OS filetype information from zip archives

makefile ‘
Parses makefiles

—

robuild

Decides what type of build it is
Constructs command lines for JFPatch, cc, etc

-

robuildyaml

FParses robuild.yaml files

—

l

pyroserver

HTTF servers which will receive throwback or {‘ﬁ;}f:nﬂr{f clata

Routes data to 'results’

simpleyaml
Farses YAML without dependencies

How The Service Works

What runs those services? (9)

50/120

JFPatch as a Service: Builder control flow

result

Container which holds and routes information

from the build process

l

rosource
Decides what RISC OS file type this is

Extracts Zip archives if needed
Stores in a temporary directory

(C, BASIC, ObjAsm, JFPatch, Pascal, Perl) lag——pst

rozipinfo
Extracts RISC OS filetype information from zip archives

makefile ‘
Parses makefiles

—

robuild
Decides what type of build it is

Constructs command lines for |FPatch, cc,

robuildyaml
otc FParses robuild.yaml files

—

l

pyroserver

HTTF servers which will receive throwback or clipboard data

Routes data to 'results’

l

docker
Manages running docker containers
Streams data to 'results’

pyro
Constructs command lines
' to run inside docker

simpleyaml
Farses YAML without dependencies

streamedinput

Streams process output in a separate thread

How The Service Works

What runs those services? (10)

e robuild has worked out the RISC OS commands to use.
* pyro is given those commands and constructs a command that can run RISC OS with those commands.
® docker is given that command, and builds a command to run RISC OS within a docker container.

e ... and the results of all of that gets fed back to the results object, which passes it back to the caller.

51/120

How The Service Works
Wait what?

“ Wait, RISC OS is running in Docker?
But Docker runs on Linux?
You're running RISC OS on Linux then? ”

52 /120

4. RISC OS Pyromaniac

June
2019

RISC OS Pyromaniac
How do you test RISC OS software without RISC OS?

* My RiscPC is in storage.

e |t's not good for testing.

55/120

RISC OS Pyromaniac
How do you test RISC OS software without RISC OS?

* My RiscPC is in storage.
e |t's not good for testing.

e RISC OS was originally run semi-hosted from a BBC, using the BBC as the I/O and RISC OS as the main
computer.

e That's what | want to be able to do - | want to be able to drive RISC OS from the CLI of a sane machine.

56 /120

RISC OS Pyromaniac

Surely that's easy? (1)

e Surely that's easy? You just run an emulation system until it hits a SWI...
... and then you make the SWI do the I/O thing. Then you run some more?

57 /120

RISC OS Pyromaniac

Surely that's easy? (1)

e Surely that's easy? You just run an emulation system until it hits a SWI...
... and then you make the SWI do the I/O thing. Then you run some more?

* Yes - that's exactly what you do.

¢ The 1frhere tool ran on June 10th - not well, but it ran.

58 /120

59/120

A-5WI

Pyromaniac: Basic execution

(Star)
:

Load code into memory

'

4.| li'[Emulate ARM code in Unicorn

L

—]

How should we report errors ?

Error raising SWI

Report error

O5_Exit

2Ol error

y

Exit cleanly

'

End

N

—— Why did execution end ¢ —

Other SWis No tick pending

@ Run regular SWI

How did it complete ?

CPU exception Timer

Should we run the timer ? —

Tick overdue

Report CPU exception @ Run timer events

RISC OS Pyromaniac

What is RISC OS Pyromaniac?

e Pyromaniac is an alternative implementation of RISC OS for non-ARM systems.

e |t is intended for use as a testing and prototyping environment which may be used during development
and automated testing.

e Written in a high level language to make that possible.

60 /120

RISC OS Pyromaniac

What's in a name?

e Pyromaniac is the system that runs ARM code.

e RISC OS is what's implemented on top of that.
So...

e A name to distinguish it from the ARM implementation.
e RISC OS Pyromaniac
e A name for the ARM implementations.

e RISC OS Classic

61/120

RISC OS Pyromaniac

What makes up Pyromaniac? (1)

e Written in Python.

e Uses Unicorn (a QEmu derived package) for emulating 32bit ARM code.

e All other packages are optional.

e Disassembly - needs capstone.

e Graphics - needs python-cairo.

e Ul - needs wxpython Or gtk+3.

e Networking - more featured with netifaces.

e Clipboard - interaction with system with pyperclip.

e Sound - needs python-rtmidi.

62 /120

RISC OS Pyromaniac

What makes up Pyromaniac? (2)

63 /120

Pyromaniac: Architecture

im Application
| RISC O5 application
W Modules # Python Modules
RISC OS5 modules ... Litility Module | | OSCommands Debugger Drraw | Internet

System Variabless

Module management

Pyromaniac

Contiguration

Resources

Tracing

Threading

Harness

pyro.py

User space

Modules

Subsystems

Emulation

Harness

RISC OS Pyromaniac

How is it different from other systems?

RISC OS emulation:

¢ RPCEmu, ArcEm - Hardware emulators.
e Riscose - OS interface replacement.

e Amethyst - ARM unit testing tool.

e Linux Port - Hardware / interface replacement.

Other systems:
e Wine - OS interface replacement.

e Docker - System isolation.

e Rosetta - Dynamic recompilation.

64 /120

RISC OS Pyromaniac

How does it compare to a bare Operating System?

Has many of the same things:

e Address space management; memory allocation.
e System calls from applications.

* Heap management.

* [/O management.

e Device drivers.

But some are missing:

e Page table management.
e Hardware interrupts.

e Memory mapped devices.

65/120

RISC OS Pyromaniac

What does it mean?

e A command line only version of RISC OS.
e A RISC OS which runs 32bit ARM binaries, on Windows, macOS, or Linux.
e A reimplementation, which uses none of the code that went before.

e Focused on being able to test software and diagnose issues more easily.

66 /120

RISC OS Pyromaniac

What does it mean?

e A command line only version of RISC OS.
e A RISC OS which runs 32bit ARM binaries, on Windows, macOS, or Linux.
e A reimplementation, which uses none of the code that went before.

e Focused on being able to test software and diagnose issues more easily.

Tech: RISC OS Pyromaniac, able to run RISC OS programs on other systems!

67 /120

RISC OS Pyromaniac

Command line only?

e Command line is the primary interface.

e Graphics implementations exist - either 'headless' or using a window showing the screen - but
command line is where it excels.

e For testing, you largely want to be able to exercise things without Ul interactions, at least for the lower
level tests.

68 /120

RISC OS Pyromaniac

No graphics, then?

Different parts of the system:
VDU - VDUA4, text output

e Graphics - VDU5, OS_Plot, Draw, Font.

e Frame buffer - Bitmap of t

Ne screen.

e Ul - How you see the VD

69 /120

U and Graphics systems.

RISC OS Pyromaniac

No graphics, then?

Different parts of the system:
* VDU - VDU4, text output

: Well supported

e Graphics - VDUS5, OS_Plot, Draw, Font.

e Frame buffer - Bitmap of t

Ne screen.

e Ul - How you see the VD

70/120

J and Graphics systems.

RISC OS Pyromaniac

No graphics, then?

Different parts of the system:
* VDU - VDUA4, text output: Well supported

e Graphics - VDU5, OS_Plot, Draw, Font: Well supported, but no sprites

e Frame buffer - Bitmap of the screen.

e Ul - How you see the VDU and Graphics systems.

71/120

RISC OS Pyromaniac

No graphics, then?

Different parts of the system:
* VDU - VDUA4, text output: Well supported

e Graphics - VDU5, OS_Plot, Draw, Font: Well supported, but no sprites

e Frame buffer - Bitmap of the screen: Nope

e Ul - How you see the VDU and Graphics systems.

72 /120

RISC OS Pyromaniac

No graphics, then?

Different parts of the system:
* VDU - VDUA4, text output: Well supported

e Graphics - VDU5, OS_Plot, Draw, Font: Well supported, but no sprites
e Frame buffer - Bitmap of the screen: Nope

e Ul - How you see the VDU and Graphics systems: wxWidgets and GTK

73/120

RISC OS Pyromaniac

No graphics, then?

Different parts of the system:
* VDU - VDUA4, text output: Well supported

e Graphics - VDU5, OS_Plot, Draw, Font: Well supported, but no sprites
e Frame buffer - Bitmap of the screen: Nope

e Ul - How you see the VDU and Graphics systems: wxWidgets and GTK

What works...
e The VDU system, and the graphics system work, mostly.

e VDU and graphics are complex so not everything works as it does in RISC OS Classic.

e Not all of it works as documented - after all not all of it is documented!

74 /120

RISC OS Pyromaniac

How do you use it? (1)

Command line invocation:

charles@laputa ~/pyromaniac> ./pyro.py --load-internal-modules --command 'gos'
Supervisor

*fx0

Error: RISC OS 7.16 (03 Oct 2020) [Pyromaniac 0.16 on Darwin/x86 64] (Error number &f7)
*time

Fri,09 Oct 2020 23:00:04

*quit

charles@laputa ~/pyromaniac>

75/120

RISC OS Pyromaniac

How do you use it? (2)

Running RISC OS programes:

charles@laputa ~/pyromaniac> echo 'l0PRINT "Hello world"' > myprog,£fdl
charles@laputa ~/pyromaniac> ./pyro.py --load-internal-modules --load-module
modules/BASIC, ffa --command myprog

Hello world

charles@laputa ~/pyromaniac>

76 /120

RISC OS Pyromaniac

Graphics demo!

771120

RISC OS Pyromaniac

Graphics demo!

Graphics features:

* Fonts.

e DrawFiles.

* Images.

e Screen bank flipping.
* Mouse pointer.

Others:
e Key input

78/120

RISC OS Pyromaniac

Graphics demo! (presentation)

Tech:

e Slide presentation system.

e Markdown parser.

e FontMap for font remappings.

e WebColours module for colour parsing.

e ImageFileRender for general image rendering, using DrawFile for vectors.

79/120

RISC OS Pyromaniac

Features - What works?

e System - Runs 32bit modules, utilities and applications.

e Interaction - Interacts with the host as its primary interface

e Video - Pretty good VDU and graphics support GTK/WxWidgets, or snapshots of state.
e Sound - SoundChannels mapped through MIDI

e Filesystem - Host filesystem by default, using , xxx filename convention.

e Network - Internet module provides limited support for IPv4 and IPv6 networking.

e Compatibility - Many simple programs work, if their support modules are loaded.

80 /120

RISC OS Pyromaniac

Features - What doesn't work?

e Desktop - Not supported

e Filesystems - No registration of filesystems

e Sound - No wave output

e Graphics - No frame buffer, No Sprites, No true colour modes

e Many other things

81/120

RISC OS Pyromaniac

Networking

e Internet module supplied, using host interfaces.

e Supports AF_INET, AF_INET6, AF_UNIX.

e Many ioctls are supported, mapped to the host system.

e Resolver module provides IPv4 host name resolution

e EtherPyromaniac provides a DCI4 driver.
 Provides a virtual network.
e EasySockets, which bypasses Internet.

Tech: Tap-Tun JSON server for Ethernet frames.

82 /120

RISC OS Pyromaniac

Draw module (1)

e Draw module supplied.

e Can render through the Cairo path system.

o C
o C

83 /120

assic

assic

DrawFile works - the 'Gerph' logo is a Drawfile.

Draw module can be used too.

RISC OS Pyromaniac

Draw module (2)

84 /120

RISC OS Pyromaniac

FontManager

e FontManager module supplied.

e Can uses Cairo 'toy' fonts.
e Can be configured to use any 'fontconfig' discovered fonts.
e Supports different alphabets, including UTF-8.

But also

e Classic FontManager works...

e ... if you disable bitmap generation - it just uses Draw.

85/120

RISC OS Pyromaniac

Configuration

e RISC OS Pyromaniac is highly configurable - over 240 directly configurable options, in 59 groups.
e Configuration can be on the command line or in configuration files.
e Example:

e ./pyro.py --config modules.rominit noisy=true --load-internal-modules --command gos

e ./pyro.py --config memorymap.rom base=90000000 --load-internal-modules --command
modules

86 /120

RISC OS Pyromaniac

Configuration files

$YAML 1.1

Configuration for loading the ROM for RISC 0S 5

debug:
- modules
- traceregionfunc
- podules
- swimisuse

config:
podule.extensionroml: ROMs/riscos5
modules.rominit noisy: true

memorymap.rom base: 0x8800000
modules.unplug: extroml:Podule,ParallelDeviceDriver, TaskWindow, SpriteExtend,SystemDevices,...

modules:
internal: true

87 /120

RISC OS Pyromaniac
Tracing and debugging

e Trace features:

e Report all instructions.

e Report basic block execution, function entries.
e Report SWI entry and exit conditions.

e Function, memory and SWI traps.

e Exception and API misuse reports.
e Debug features:

* Most modules have debug available.

e Can be enabled at runtime (*pPyromaniacbDebug +<option>).

88 /120

RISC OS Pyromaniac

Tracing code (1)

Tracing SWI arguments (--debug traceswiargs):

383£f848: SWI
=> r0
r3
r4
<= r0
r2
r3

>GCOL 0, 255,192,0

&00cO0££00
&00000100
&00000000
&00000000
&00000002
&00000000

ColourTrans SetGCOL

12648192
256

o N O O

colour
flags
action
gcol

log2 bpp
corrupted

Tech: OSLib parser and templating system

89/120

RISC OS Pyromaniac

Tracing code (2)

$ pyro testcode/bin/word time string --debug trace
700013c: ADR rl, &07000174 ; ->» [&00000000, &000000O0O0,
&00000000, &00000000]
7000140: MOV r0, #&e ; #14
7000144: MOV r2, #0
7000148: STRB r2, [rl] : R2 = &00000000, R1 = &07000174
700014c: SWI OS Word
7000150: SWI OS WriteS
7000164: MOV ro, rl + R1 = &07000174
7000168: SWI OS Write0
700016c: SWI OS NewLine
Time string: Sun,06 Sep 2020 08:22:38
7000170: MOV pc, lr + R14 = &04107fe0
4107fe0: SWI &FEEDOS

90 /120

RISC OS Pyromaniac
Debugging

charles@laputa ~/demo> pyro --load-internal-modules --command gos --debug cli,clialias,osfscontrol
CLI: 'gos'

CLI alias: Wildcard 'AliasSgos’' start read from None

Supervisor

*-

CLI: '.'

CLI alias: '.' expansion

CLI alias: Expanded to 'Cat °

CLI alias: Execute: Cat

CLI: 'Cat '

CLI alias: Wildecard 'Alias$Cat' start read from None
Catalogue directory '@'

Canonicalise filename '@' using pathvar 0L, path 0L
Read boot option of 'S’

Dir. $ Option 02 (run)

Read directory 0

CSD HNoFileSystem: S$too

Read directory 3

Lib. NoFileSystem:S

Read directory 2

URD NoFileSystem:S

example/py WR/WR example/pyc WR/WR wimperror WR/WR
*

91 /120

RISC OS Pyromaniac

What is it like to work with? (1)

e The Pyromaniac context is usually ro, containing...
* registers (ro.regs[#])
® memory (ro.memory[address])
e configuration (ro.config['group.option'])
® resource (ro.resource['resource'])
 methods for execution (ro.execute, ro.execute with error)
e trace functions (ro.trace)

e the kernel (ro.kxernel)

e The Pyromaniac layer is all about the lower level execution and setup of the system.

92 /120

RISC OS Pyromaniac

What is it like to work with? (2)

e The RISC OS Kernel context is ro.kernel...

¢ dynamic areas (ro.kernel.da, ro.kernel.da rma. ro.kernel.da appspace, ...

¢ vectors (ro.kernel.vectors[#])

* modules (ro.kernel.modules)

e vdu and graphics system (ro.kernel.vdu, ro.kernel.graphics)
e input and mouse (ro.kernel.input, ro.kernel.mouse)

e filesystem (ro.kernel.filesystem)

e system variables (ro.kernel.sysvars[varname])

® program environment (ro.kernel.progenv)

* system APIs (ro.kernel.api)

e The Kernel object is always referenced explicitly from ro.

93 /120

)

RISC OS Pyromaniac

What is it like to work with? (3)

OS ReadEscapeState implementation.

from riscos import handlers
import riscos.constants.swis as swis

@handlers.swi.register(swis.OS ReadEscapeState)
def swi OS ReadEscapeState(ro, swin, regs):

OS ReadEscapeState

<= C flag is set if an escape condition has occurred

regs.cpsr ¢ = ro.kernel.progenv.escape condition

94 /120

RISC OS Pyromaniac

What is it like to work with? (4)

Many commands are just a thin wrapper around a system call:

def cmd rmload(self, args):

Syntax: *RMLoad <module-file> [<args>]

self.ro.kernel.api.os module(modhand.ModHandReason Load, args)

95 /120

RISC OS Pyromaniac

What is it like to work with? (5)

Context handlers can be used to make memory allocation easy:

def cmd time(self, args):

Syntax: *Time
with self.ro.kernel.da sysheap.allocate(128) as time string:
time string[0].word = 0
self.ro.kernel.call swi(swis.OS Word,
rin={0: osword.OsWord ReadRealTimeClock,
l: time string.address})
self.ro.kernel.writeln(time string.string)

96 /120

RISC OS Pyromaniac
What is it like to work with? (6)

Context handlers can also preserve the output state:

def cmd show(self, args):

Syntax: *Show [<variable>]

Preserve and enable VDU paging

with self.ro.kernel.api.vdupaging():
Enumerate and print variables

suffix = "'

if vartype == sysvars.TYPE NUMBER:
suffix = '(number)'

elif vartype == sysvars.TYPE MACRO:
suffix = '(macro)'

for varname, vartype, value in self.ro.kernel.api.os_ readvarval enumerate(args):
if vartype in (sysvars.TYPE STRING, sysvars.TYPE MACRO):
String returned parameters should have their value escaped GSTrans style
value = self.ro.kernel.gstrans.escape(value,
escape chars='
escape control=True,
escape topbit=True)

"<' if vartype != sysvars.TYPE MACRO else

self.ro.kernel.writeln(' '%s%s : %s' % (varname, suffix, wvalue))

F

97 /120

RISC OS Pyromaniac

What is it like to work with? (7)

Exceptions can be trapped in a pythonic way:

def cmd unset(self, args):

Syntax: *Unset <variable>
try:
self.ro.kernel.api.os setvarval delete(args)
except RISCOSError as exc:
if exc.errnum != errors.ErrorNumber VarCantFind:
raise
Lack of a variable is not an error

98 /120

RISC OS Pyromaniac
What good is it? (1)

e Writing my own software.

e This presentation tool.

e Other older components.
* Trying things out.
e Sound system.
e Debugging other people's software!

e https://asciinema.org/a/345766 shows an interactive session demonstrating that freeing the stack
you're currently using may have bad effects.

99 /120

RISC OS Pyromaniac
What good is it? (2)

Supervisor
*cobeyiobey echosed

==== Begin exception report ====

Exception triggered: EBxception 'Prefetch Abort'

r} = &a%a%a%a%, rl = &a%a%a%a%, r2 = &00000000, r3 = &a%a%a%al9
r4 = g00000191, r5 = &EO0TO01£28, r6 = &0T008acd, r7 = &0Q000CQ01
r8 = g07008%aa8, r9 = 07007720, rlQd = 07008418, rll = &za%a%a%ald
rl? = ga%a%a%a%, sp = &a%a%a%a%, lr = &a%a%a% %, pc = &a%a%afac

CPSR= &60000010 : USR-32 ARM fi ae gviZn
Becently executed code:
———— Block &0T7006fd4c, 1 instructions ——-
T006Ede: LDR po, 07007230
—-——— Block &0382095c, 5 instructions ——-
382095c: {DA 'ROM', module 'SharedCLibrary'}
Function: memset

= &0382095¢c

382095¢c: MOV rl2, sp : Function: memset
3820960: PUSH {rd, rll, rl2, 1lr, pc}

3820964: SUB rll, rl2, #4

3820968: SUBS r2, r2, #4

382096c: BMI &038209E4

———- Block &03820%al, 4 instructions repeated 229 times ———-
38209a0: STMIA r0!, {rl, r3, rl2, 1r}
38209ad4: STMIA r0l, {rl, r3, rl2, 1r}
3320%a8: SUBS r2, r2, #&20
3820%ac: BGE 038320920

———— Block &038209d4, & instructions ——-
383209d4: SUBS r2, r2, #4
38209d48: STRLT rl, [r0], #4
38209dc: STMGEIA rol, {rl, r3}
38209%e0: SUBGE r?, r2, #4
38209e4: ADDS r2, r2, #4
38209=8: LDMDBEQ rll, {rx0, rll, sp, pc}

==== Bnd exception report ====

Error: Internal error: Abort on instructicn fetch at &a%a%a%a8 (BError number &30000001%
*quit
qu L

100/120

RISC OS Pyromaniac

Problems...

e [IRQs and timed events aren't handled well.
e Execution context is split between emulated system and Python code.
e Error handling is still a bit troublesome.

e Replaced writing device driver, with writing interface modules.

101 /120

RISC OS Pyromaniac

Other technologies!

Tech:
e RISC OS Alphabets in Python Codecs - https:/github.com/gerph/python-codecs-riscos

e Non-RISC OS editor syntax modes:

e SublimeText syntax for RISC OS command files -
https://github.com/gerph/sublimetext-riscoscommand-syntax

e NanoRC syntaxes for some RISC OS file types - https:/github.com/gerph/nanorc-riscos

* Tool for building hourglass modules - https://github.com/gerph/riscos-hourglass-maker

e Tests for RISC OS APls, and a tool for testing tools - https:/github.com/gerph/riscos-tests

e PRM-in-XML documentation system rework.
e Miscellaneous toolchain updates.

e Changelog management system - https:/gitlab.gerph.org/gerph/changelog-management

102 /120

RISC OS Pyromaniac

What does it run on?

* macOS (console, GTK, wxWidgets)
e Also a dedicated application.
e Linux (console, GTK, wxWidgets)
e Also within a docker container.
e Windows (console, wxWidgets) [native and under Wine, also docker wine-py]

e Also a dedicated application.

103 /120

RISC OS Pyromaniac

“Releases”?

e Released once a month, just to myself.

e October's version is 0.16.
e Releases are a way to stop it being unusably 'half finished'.

e Releases are a great incentive - | really have achieved a lot this month!
e Long lived development, for example...

e Font Manager lived on a branch for about 6 months.
e EasySockets is still on a branch.

e PyromaniacGit is still be worked on.

104 /120

RISC OS Pyromaniac

“Releases”?

[master 8 d@ﬁ.dd a basic execution diagram; update the architecture diagram.

{f Merge branch 'screen-banks' inte font+jpeg-merged
| scretn-banks g {} Ensure that the GTK ond WxWidgets implementations redrow on bankswitch,

& Merge branch '"screen-banks' inte font+jpeg-merged
;E.!H:lded support for screen banks to the graphics system and cairo.
- ElFi.x for system diogram putting modules im the wrong place.
ﬁ Merge branch 'master’ into font+jpeg-merged
4 @Md missing hourglass expect files.
- E]vuu cursor state 15 now tracked.
& Merge branch "master' into fonts+jpeg-merged
- -j}_ Merge branch "ticker-without-interrupts' into font+jpeg-merged
4 EFix for cursor key code generation from KeyV.
. @Fix for hourglasses turned on and of f rapidly generting exceptions.
[clipboard-in-gr_ g {t Add option for copying the screen to the clipboard in WxWidgets.
ﬂ: Add WebP and JPEGZBEE filetype allocations.
ﬁ Add support for image quality selection to the ImageFileRenderPyromaniac.
peg-experinent @Md WebP and JPEGZOR@ filetype allocations.
: @ﬁ.dd support for imoge quality selection to the ImageFileRenderPyromaniac.
j}; Merge branch "jpeg-experiment’ into font+jpeg-merged

T Ellixtr'u debug for what file handle was allocated on opening file.

| zipper-experisent 2 ﬁ Merge branch 'master’ into zipper-experiment
bs-experiment L+ Merge branch 'master’ into bts-experiment
bts-experinent? 2 ﬂ; Merge branch 'master’ into bts-experimentd
eozysockets- exp_ & Merge branch "master' into easysockets-experiment
.16 @Updated version number to 7.16.

@ Merge branch 'sound-split’

l/' @Fix for the wxWidgets Ul saving screenshots to the pyromaniac dir.
ml-l {} Add support for sound suppression; fix for 0S_Byte constants.

Ehdd stub SoundDMA so that BASIC "VOICES® works.

g [, - - - . -

105/120

5. Conclusion

106 /120

Conclusion

Have | done what I set out to do?

Let's review what | saw as problems...

e Development on RISC OS is tedious
e RISC OS testing is awful
e RISC OS is awful for testing

107 /120

Conclusion
Development on RISC OS is tedious

e Source control

e Cross compiling

e Managed development environments
e Automated testing

e Feature and regression testing

e Fleets of systems available

108 /120

Conclusion
Development on RISC OS is tedious

e Source control - yup, using GitLab, PyromaniacGit
e Cross compiling

* Managed development environments

e Automated testing

e Feature and regression testing

e Fleets of systems available

109 /120

Conclusion
Development on RISC OS is tedious

e Source control - yup, using GitLab, PyromaniacGit
* Cross compiling - yup, Linux and macOS

e Managed development environments

e Automated testing

e Feature and regression testing

e Fleets of systems available

110/120

Conclusion
Development on RISC OS is tedious

e Source control - yup, using GitLab, PyromaniacGit

e Cross compiling - yup, Linux and macOS

* Managed development environments - yup, docker, artifactory, applications
e Automated testing

e Feature and regression testing

e Fleets of systems available

111/120

Conclusion
Development on RISC OS is tedious

e Source control - yup, using GitLab, PyromaniacGit

e Cross compiling - yup, Linux and macOS

e Managed development environments - yup, docker, artifactory, applications
* Automated testing - yup, build.riscos.online, and GitHub and GitLab builds
e Feature and regression testing

e Fleets of systems available

112 /120

Conclusion
Development on RISC OS is tedious

e Source control - yup, using GitLab, PyromaniacGit
e Cross compiling - yup, Linux and macOS

e Managed development environments - yup, docker, artifactory, applications

e Automated testing - yup, build.riscos.online, and GitHub and GitLab builds
* Feature and regression testing - yup, thousands of tests, some public

e Fleets of systems available

113 /120

Conclusion
Development on RISC OS is tedious

e Source control - yup, using GitLab, PyromaniacGit
e Cross compiling - yup, Linux and macOS

e Managed development environments - yup, docker, artifactory, applications

e Automated testing - yup, build.riscos.online, and GitHub and GitLab builds

e Feature and regression testing - yup, tests for the OS, and code coverage

* Fleets of systems available - well, no, not yet

114 /120

Conclusion
RISC OS Testing is awful

e RISC OS Pyromaniac has tests - about a thousand at present.
e Tests take about 18 minutes to run - and run on Linux and macQOS in parallel.

e Code coverage hovers at around 65%.

115/120

Conclusion
RISC OS is awful for testing

e Clarification: RISC OS Classic is awful for testing.
e Heavily used as part of the development of the present tool.
e |FPatch itself is tested.

e BASIC module has some tests that run programs.

116 /120

Conclusion
Could it be better?

* More APIs.

e Better handling of corner cases.

e Sprites (sigh).

e Back Trace Structures.

e Finish the pending branches - Windows, Zipper, EasySockets, Git, DCI4, ...
e Using it for actual testing - that was what it was for!

e So many other opportunities.

117 /120

Conclusion

References

If you're wanting to know more, or review this talk, a site, https:/pyromaniac.riscos.online/ has been created
which contains support materials:

e Copies of these slides.

e Links to the technologies in these slides.

e Explanations of the Cl examples.
e Development images and screenshots.

e Documentation from Pyromaniac (features, changelogs, configuration info).

There's also a demonstration site: http://shell.riscos.online/.

118 /120

Conclusion
Am | happy?

You can make whatever judgements you like!

119/120

6. Questions

Info site: https://pyromaniac.riscos.online/
Shell: http://shell.riscos.online/

120/120

