0 /80

Let's talk 64 bit

Let's ARM ourselves for the future!
Gerph, August 2024

0. Introduction

1/80

_'.

Introduction
How I'll do this talk

I'll be talking about 64 bit issues with RISC OS.
1. What is 64 bit ARM?

2. How is it different to 32 bit ARM ?

3. What problems does 64 bit cause ?

4. How can we address those problems ?
5. A look at some 64 bit code.

6. Conclusion.

Hopefully I won't be too technical, but... yeah, it might get complicated.

2 /80

Introduction
Who am I?

e I'm Charles, but known as Gerph in most things online.

* | worked at RISCOS Ltd, and produced RISC OS Select.

* | ported almost all of RISC OS to be 32 bit.

* |'ve written the only other implementation of RISC OS - RISC OS Pyromaniac - from scratch.

* |'m a strong advocate of taking RISC OS forward, rather than letting it stay stagnant.

3 /80

What is it?
What is 64 bit ARM ?

* 64 bit ARM was introduced in ARMv8.
* |t includes a backwards compatible 32 bit execution state.

e The '64 bit' refers to the size of memory and the register size.

e Strictly ARMv6 defines AArch64 and AArch32.
e |'ll refer to 64 bit ARM and AArch64 which means the same thing.
e And I'll say 32 bit ARM and AArch32 - which again means that same thing.

5/80

What is it ?
Why should we care?

* Processors that support 32 bit are not going to be produced forever.

e If you want to run RISC OS on real hardware in the future, you're going to be stuck with the chips that
currently exist.

e Times change, you either move with them, or you're left in the background.

6 /80

2. How is 64 bit different to 32 bit ¢

_'.

Differences

Instruction set

e AArch32:
e 32 bit wide instructions for ARM, and 16/32 bit wide for Thumb.

e Many instructions can be conditional.

* L oad and store multiple (up to 16) registers in a single instruction.
e AArch64:

e 32 bit wide instructions. No equivalent of Thumb.

* Instruction set is not compatible with AArch32.

* General conditional instructions not supported...

e ... but some instructions allow 'operate register A or B depending on condition'.

e Pairs of registers can be loaded and stored.

8 /80

Differences

Memory

e AArch32

* Memory is limited to 32 bits of logical space.

e With large physical address extension, physical memory can be 40 bit, but otherwise is limited to
32 bit.

* The same logical address space is used by all modes.
e AArch64

* | ogical address space is 64 bit.
* Physical address space is 48 bit.

9 /80

Differences
Registers (1)

e AArch32

e Regular registers are 32 bit wide, named with an r prefix.

* SP, LR and PC are regular registers.
* AArch64

e Regular registers are 64 bit wide, but can be accessed as 32 bit or 64 bit.

* General register naming is r, but when accessed as 64 bit the prefix used is x; 32 bit access uses w

* SP is a special register, and cannot be used for general operations.
e SP must be aligned to 16 bytes (128 bits; 2 registers).
| R is a regular register.

e PC is a special register, not directly accessible.

10/ 80

Differences
Registers (2)

e AArch32

e Floating point support is very variable - lots of choices of what is supported.

e CPSR and SPSR hold the current and saved processor state.

e SP, LR (and some others) are banked in different modes.
e AArch64

e Floating point support is much more reliable - it's all there, or it's not.
e PSTATE holds the current processor state.
* SPSR exists for each exception level.

* SP is preserved in a system register on exception.

11 /80

Differences
Calling standard (1)

e AArch32 uses APCS/ATPCS:

e r0-r3 are used to pass parameters, then the stack.
e r0-r3 can be used to return values.

e r4-r11 are preserved between calls.

* r9 might be the static base.

e r10 is the stack limit.

e r11 is the frame pointer.

® r12 is a scratch register.

e r13 is the stack pointer.

e r14 is the link register, or temporary values.

12 /80

Differences
Calling standard (1)

e AArch64 uses AAPCS:

* x0-x7 are used to pass parameters, then the stack.

* x0-x7 can be used to return values.

* x8-x15 can be corrupted between calls.

e x16 and x17 are used for inter-procedure workspace, but can be corrupted otherwise.
* x18 is reserved for platform use.

* x19-x28 are preserved between calls.

* x29 is the frame pointer.

e x30 is the link register.

e x31 is either the stack pointer or a zero register depending on use.

e Flags are corruptible across calls.

13 /80

Differences

Privilege model

e AArch32:

e Different modes and privilege levels - UsR, svc, IRQ, FIQ, ABT, UND, MON, SYS, HYP.
* Page tables have permissions per privilege level.

 Exceptions such as aborts, SWIs or interrupts go through exception vectors.
e AArch64:

e Different exception levels - EL0, EL1, EL2, EL3.
® ELO is similar to USR; EL1 is similar to SVC.

e Different page tables might exist per exception level (L2 and EL3 have their own; EL0 and EL1
share page tables).

e The exception vector used depends on the privilege level being entered.

* The reason for changing privilege raise is reported through the 'Exception Syndrome'.

14 / 80

Differences
Example AArch64 code

os_inkey: //
STP x29, x30, [sp, #-16]!
AND x1, x0, #255
LSR x2, x0, #8
MOV x0, #0x81 //
MOV x10, #0x6 //
svC #0 //
//
//
CMP x2, #27
BEQ __os_inkey escape
CMP x2, #255
CSINV x0, x1, xzr, NE //
os inkey exit:
LDP x29, x30, [sp], #16
RET

int os inkey(delay)

INKEY
OS_ Byte
Returns R1 = character read
R2 = 0 =>char was read, 27=>escape,
255=>nothing read

// We are going to return -1 for nothing read, and -2 for escape

if x2!=255 x0=x1 else x0=-1

15 /80

4. What problems does this cause?

16 /80

_'.

Problems

Instruction set (1)

e None of the existing software will work straight off.

 C code will need to be recompiled - and probably modified.

e Assembler code will need re-writing - and there's a lot of it.

e BASIC... would need a re-written BASIC in order to work.

e Norcroft compiler won't work - it only builds for AArch32.

e Some instructions that seem familiar don't work the same way (eg orRr with a constant).

* Instructions like ADRP to get the address of a page base are used a lot - assuming that the loaded code
starts at a known page boundary offset.

17 /80

Problems

Instruction set (2)

e swI numbers in RISC OS are 24 bits, but the SVC instruction only allows for 16 bits.

18 / 80

Problems

Memory

e Much larger memory means that pointers are larger.

e Existing APIs which use descriptors in memory can't use the whole of memory without being changed -
that means registrations that use pointers, and descriptor blocks. If you know the Wimp well, then think
of the indirected text pointers, which would need to be 8, not 4 bytes.

19 /80

Problems

Registers

e Greater numbers of registers, and different restrictions means changes to some interfaces -
environmental particularly.

 The stack being 16 byte aligned means that in hand-written code you need to apply more care.

20/ 80

Problems
Calling standard

e The calling standard doesn't provide a static base at all (no equivalent to R9 in APCS re-entrant code) -
more difficulty in compiling for different bases. If you're used to the assembler form of module code,
this affects the module workspace registers.

* The calling standard doesn't encourage the stacking of input parameters, so backtraces don't include as
much information.

* Related to the calling standard, the compilers don't write function signature strings before functions.
* There is no stack limit register - software stack limit checks are not possible with the regular compilers.

* Without a static base in the C code, having modules that can be instantiated is harder.

21 /80

Problems

Privilege model

e Some operations that you might assume aren't possible (checking the exception level doesn't work at
ELO - no equivalent of a usrR mode check).

22 /80

Problems
RISC OS APIs (1)

e Some operations are just bad design...

e Bouncing in and out of privileged modes (0s_Enteros) being one.
e Directly controlling IRQs (0s_1ntof£) being another.

* Allowing the user mode application to handle operations in privileged modes as part of the
environment, taking control away from the OS, is another.

e Some APIs use flags for input and output which are hard to work with when writing in C or other
languages.

® 0S_ReadEscapeState, OS_ReadC or 0S_ReadLine return the escape flag.
* 0Ss_BGet and 0s_BPut reporting failure with the c flag.

e Many of the older vectors use the flags in unfriendly ways.

e Returning with the v flag set to signal errors is pretty unfriendly, so maybe we limit it?

23 /80

Problems
RISC OS APIs (2)

e Executables need to be runnable.

e Modules (system extensions) need to be recognised, and safe to run on older systems.
* Absolutes (user executables) need to be recognised, and safe to run on older systems.

e Utilities (user tools) need the same.

* Some APIs need to be updated to reflect the new architecture.

24 /80

Problems
Others...

* Most applications won't exist for RISC OS.
* The user base is small.
e The developer base is smaller.

e Developing for AArch64 may take away from regular RISC OS development.

25/80

5. How can we address those problems ?

26 /80

_'.

Decisions

How do we decide what matters?

e RISC OS is complicated.
* We have to make decisions on what is important now, and in the future.
* Doing something is better than talking about the problem for another 20 years.

e With the small number of developers, it makes sense to approach things in a piecemeal way,
addressing small parts of the problem.

e Making pragmatic steps to move in the right direction, even if it's not for AArch64 directly, will make
the process simpler.

* Recognise that the process will take a long time.

e Recognise also that there might not be end-user visible effects in much of the changes - replacing
existing modules with better written versions shouldn't even be noticeable to end-users, but it is still
important work.

27 /80

Decisions

What decisions do | feel make sense?

e |'ve talked about many different aspects of the problems.
 There will be many things that | and other people will have considered apart from these.

* |'ve got experience writing a separate version of RISC OS, so | have a unique outlook on the problem.

Let's go through a few things from the areas that we talked about and how I feel they should be handled.

28 /80

Decisions

Instruction set (1)

 The instruction set is only actually a problem if you're writing lots of code in assembler.
e Stop writing code in assembler...
e .. about 20 years ago.

* All new code should be in C (or other high level language), with minimal assembler, out of line of the
primary source.

e Use interface libraries that you can easily replace if the interfaces change, rather than writing direct
calls to RISC OS interfaces in business logic.

e Assume that a C compiler (or similar) will be used for AArch64, rather than hand-written assembler.

29 /80

Decisions

Instruction set (2)

e Since the SWI number cannot fit into the SVC instruction, use a register.
e R10 is used by the 0os_callaswI interface, so let's use that.

* Define that all RISC OS svc calls are to svc #0, passing the SWI number in x10.

30 /80

Decisions
Memory (1)

e Many of the interfaces in RISC OS would need to change if you wanted to use the whole 64 bit
memory space.

e That would mean that (for example) control blocks would have different forms in 64 bit and 32 bit
systems to allow full access to memory.

* Or newly created APIs would be needed, thus reducing the likelihood that people would use them.

* So - initially - don't support the full address space.
* Just support 32 bit logical address space.

* All the APIs have a 1:1 mapping in general (not withstanding some simplifications for less common
operations).

31/80

Decisions
Memory (2)

e Use the instruction's SVC number (#0 being for RISC OS SWis) for future expansion.

* #0 means 'SWI with an interface compatible with 32 bit memory systems'.

e #1 means 'SWI with an interface compatible with 64 bit memory systems'.

 That gives forward compatibility when we want to increase the capabilities in the future.

32 /80

Decisions

Registers

e x18 is defined for operating system use.
e |t isn't used in the same way in each system.
e This could be the application context, or workspace for parts of the system.

e The L1 value for x18 could be different to that for the application in ELo0.

33 /80

Decisions
Calling standard (1)

e Adopt AAPCS as the only register mapping on the system.
e Since we're saying that all code should be written in C anyhow, this naturally happens.
e We can define SWI calls to pass in their registers in x0 - x9, with the SWI number in x10...

e ... and to return like that too, because this is compatible with AAPCS (although it does allow a couple
more registers to be passed through than it expects.

* Assume that FP will always be used - if FP is always used, we can always trace the execution.

34 /80

Decisions
Calling standard (2)

e SWI calls in assembler then look like this:

MOV x10, #4 // 0S_ReadC
SVC #0

* |f you were to define that in a function, it would look like this:

Os readc:

STP x29, x30, [sp, #-16]!

MOV x10, #4 // 0S ReadC
SvC #0

LDP x29, x30, [sp], #16

RET

35/80

Decisions
Calling standard (3)

* Because there's no static base register, handling things like multiple instantiation of modules is harder.

e So, let's not even try.

e Multiple instantiation is almost never used.

e And when it is, it's never used well.

* Preferred instances get really confusing when you're trying to use SWIs or * commands.

* |[t's a poor man's substitute for designing your module in a way that can handle entrancy in
different contexts.

36 /80

Decisions

Privilege model

e We've mentioned things like the fact that the user mode application should remain user mode only.

* |t would be very useful to define privileges for modules as well, so that they might be able to execute
more safely.

* |'m not sure that this is something to attack early on, though.

37 /80

Decisions
RISC OS external APIs (1)

e Ensure that tests exists for RISC OS APIs, so that you can define what the APl does, and compare to
what the new implementations will be.

* Being able to characterise the behaviour of a given interface means you can replicate the test, and the
implementation.

* That's better than writing the code and declaring it done, without proof or validation.

* As interfaces are implemented, the tests can warn you what the deviance from the expectation is.

38 /80

Decisions
RISC OS external APIs (2)

e Redesign the APIs that use flags to avoid them:

e 0Ss_Readc should return the escape state in x1 rather than the c flag, for example.

* Vector cnpv should be shot and replaced with a less ugly clone (it takes 2 flags on input, whose
combination means different things).

* (many others)
* Replace the environment handlers with ELo-only handler state.

 Rather than being entered from other modes, these should only be entered in ELo0.
* The application only ever executes in ELO.

* Maybe create a process model using 0s_TaskControl eventually.

39 /80

Decisions
RISC OS internal APIs (3)

e If modules are written in C, why not make them easier to work with?

e Replace the module interface to match that used by CMHG.

* For example, SWI calls could pass a register block in, together with the SWI numbers in x0 and x1
, rather than the registers being in x0 - x9 and the register number in x10.

e Rather than returning with v set and a pointer to an error in R0, just return the pointer to an error
or 0 in x0, just like CMHG expects.

* This simplifies the implementation of the module veneers to almost nothing.

* Without module instantiation, the need for r12 private workspace pointer almost entirely goes
away.

* The result would be that actually your SWI entry point could be just a C function, with no veneer at all.

40/ 80

Decisions
RISC OS executables (AIF - 1)

e Absolute files already have a way to recognise the module is not compatible with a system by using the

header flags.

e Recognising absolutes that are unsuitable is easily handled through the service UKCompression calls,
if necessary.

* Updating the header to define it as incompatible with 32 bit systems if it is run is easy enough.

* Let's define the initial section of the AIF to be 32 bit ARM with headers set appropriately.

41 /80

Decisions
RISC OS executables (AIF - 2)

42 /80

_start
NOP
NOP
NOP

entry

SWI
error block
DCD

= "AArché64 binaries cannot be run

ALIGN
DCD

entry
0S_Exit
<variable>
<variable>
0
<variable>
0

0x8000

0

64

0

0

0

r0, error block
0S_GenerateError

0

- - - - - - - - - - - - - - - -

- e

was decompression
was reloc

was zero init

was image entry
0S_Exit

read only size

read write size
debug size

zero init size
debug type

linked base address
workspace size (obsolete)
address mode

data base address
reserved

reserved

was decompression
was reloc

on 32 bit RISC 08" ,0

Decisions
RISC OS executables (AIF - 3)

* Then the 64 bit code starts at ss100 (file offset s100), and has a similar format to the original AIF header.

_aifé4 entry:
NOP // Relocation code (not currently used)
BL _zeroinit // Zero initialisation
BL _start
MOV x10, #0x11 // 0S Exit
SVC #0

* Why no decompression entry?

* Memory is cheap.

* Discs are cheap.

e Distribution formats like Zip (using deflate) or other more modern formats are more efficient.
e Makes patching harder.

* Why bother?

43 /80 'l

Decisions
RISC OS executables (AIF - 4)

e Future developments would almost certainly integrate ELF loading for application space.

e ELF linking removes a lot of the need to define a specific header format, etc.

44 /80

Decisions
RISC OS executables (Modules - 1)

e Modules have had a standard 'feature flags' to differentiate them since the early 32 bit system was
created.

e Pyromaniac indicates the architecture of the module with one of 16 values in the feature flags - bits 4-7
contain the architecture:

e 0 => AArch32
e 1 => AArch64
e 2 => x86-64

e 15 => Python (for PyModules in RISC OS Pyromaniac)

* https://pyromaniac.riscos.online/pyromaniac/prm/kernel/modules/modules-supplement.html

45 /80

Decisions
RISC OS executables (Modules - 2)

e Just setting the features flag won't work on earlier systems that don't know about it.

e Also set bit 30 of the module initialisation offset to indicate that the architecture is present (and
not ARM).

* This prevents earlier systems from loading the module, as it is an invalid offset, so makes them
safe.

e Could be recognised by Service ModulePreInit on earlier systems.

* We can also include an indication of the zero-initialisation space needed, so that the OS can reserve
enough room after the module.

* Indicate that this information is present with a bit in the features flag.

46 / 80

Decisions
RISC OS executables (Modules - 3)

.section .init.rmf, "a"

.word 0 // offset to code start code

.word init + (1<<30) // offset to code initialisation code
.word final // offset to code finalisation code
.word service // offset to code service call handler
.word title // offset to string title string

.word help // offset to string help string

.word command table // offset to table help and command keyword table
.word swi_base // number SWI chunk base number
.word swi handler // offset to code SWI handler code
.word swi names // offset to table SWI decoding table
.word 0 // offset to code SWI decoding code
.word messages_file // offset to code Messages filename
.word modflags // offset to table Module features
modflags:

.word 0 + (1<<2) + (l<<4) // 32 bit NOT supported + zero-init present + AArché4
.word _zinit size // Size of our Zero initialised area
title:

.asciz "ModuleWithInit"

help:

.ascili "ModuleWithInit"

.byte 9

.asciz "1.00 (11 Aug 2024) A test of module init/final code"

47 /80

Decisions *
RISC OS executables (Modules - 4)

e Compiled C code commonly uses the ADRP instruction to get the relative address of the start of a page.

e Example of reading a 32 bit value from workspace.

00008580 : 90000000 : : ADRP x0, &00008000
00008584 : b94ce000 : ..L. : LDR w0, [x0, #&ce0l]

* This means that we assume that the binary is loaded at a known position relative to a page boundary.

e That's true for Absolutes at &8000, but modules have traditionally been loaded at an arbitrary position
(usually with the last nibble ending in &4), so this requirement doesn't hold.

48 / 80

Decisions
RISC OS executables (Modules - 5)

* In 64 bit modules will be in a managed area which also loads them at a page boundary + &4.
e This allows the blocks to be allocated in a special form of 0S_Heap.

e Traditionally the modules were loaded into the 'RMA' - 'Relocatable Module Area'.

e With different requirements for the code and data, the modules can instead be placed in an explicit
'Module Area', which has page aligned allocations.

e Rename the 'RMA' to 'Random Memory Area'.

e That better describes what it is used for!

* The new dynamic area is number 9 - the area which was reserved in RISC OS 4 for the 'read-only
module area'.

e With a bit more thought, this will allow module code regions to be protected from being overwritten.

49 /80

Decisions
RISC OS executables (Utilities - 1)

e Utilities have had a standard header defined since RISC OS Select.
e https://riscos.com/support/developers/riscos6/programmer/codeformats.html

* We can reuse this to indicate the form of the executable, in a similar way to the AIF files.

* Instead of saying that the utility is 32 bit or 26 bit, we can say it's built for AArch64.

50/ 80

Decisions
RISC OS executables (Utilities - 2)

51/80

AREA |Asm$$code|, CODE, READONLY

0S_GenerateError * 0x2b

05 _Exit * 0x11
ENTRY

_start
B arm32_ entry
DCD &79766748 -
DCD &216C6776 -
DCD <variable> :
DCD <variable> :
DCD 64 :
DCD <variable> :

arm32_ entry
ADR r0, error block F
CMP r0, #1l<<31 H
MOV pc, 1lr

error block
DCD 0
= "AArch64 binaries cannot be run
ALIGN

magic 1

magic 2

Read only size
Read/write size
built for 64 bit

AArch64 entry point offset

was decompression
set V flag

on 32 bit RISC 0s",

0

Decisions
RISC OS architecture APIs (1)

 The decision to use only 32 bits of logical address space for the operating system means that we don't
have to redesign existing APlIs.

e All pointers will be truncated down to 32 bits.

* This means that applications and modules just have to be recompiled with suitable types to make
them work in the new system.

e The bulk of the APIs won't have changed (except for replacing some ugliness in flags), so the
system can be made to work more quickly.

e | ater work may enable larger memory regions.

By doing this we reduce the problem to one of language - just the instruction set needs to be
addressed, not the mechanism by which the OS functions.

52 /80

Decisions
RISC OS architecture APIs (2)

53 /80

e The Debugger module able to disassemble instructions used by the current system.

* Debugger Disassemble will need to disassemble AArch64.

e RISC OS Pyromaniac provides Debugger DisassembleArch which allows other architectures
to be disassembled.

* This means that existing systems can disassemble AArch64 code, and future AArch64 OSs can
still disassemble 32 bit code.

¢ The architecture number matches that module architecture numbers.

* See https://pyromaniac.riscos.online/pyromaniac/prm/programmers/debugger-supplement.html for
documentation.

e Try it on shell.riscos.online - *MemoryI 6 <address> disassembles AArch64.

* My work on a replacement Debugger will address some of this.

Decisions
RISC OS architecture APIs (3)

e To make it easier to understand the environment we run in, we need to be able to ask what the system
IS.
e 0S_PlatformFeatures 64 is implemented in RISC OS Pyromaniac to describe the CPU

register layout used by the exception block.

* This describes the current architecture (using the same architecture number), and the registers
present in the block.

e Debuggers (like the Debugger module and others) can use this information to report the system
type.

e RISC OS Pyromaniac reports the buffer size as 33 * 64 bit registers + 1 * 32 bit register - this
doesn't account for VFP registers, which is problematic.

e See: https://pyromaniac.riscos.online/pyromaniac/prm/kernel/progenv-supplement.html

54 /80

Decisions
RISC OS architecture APIs (4)

e Other informational interfaces might need to change:

e 0S_Byte &81 returns ARM based systems as &Ax - what about AArch64? &40 maybe? (that's
free)

* Most of 0S_PlatformFeatures may not make sense for AArch64.
* 0S_ReadSysInfo 8 for platform class probably should report differently.

* I[n most cases, user-facing APIs should be pretty much the same.

55 /80

Decisions
RISC OS Libraries

e What about the more general libraries?

e The C library is obviously vital if we're writing everything in C (of course, you could use another
language, but you can't reuse as much code).

e Many C libraries exist, which can be used as the basis for a C library, without the legacy of the
Codemist library.

e Some can be written from scratch - it's not hard.

e RISC_OSLib is frustrating, but it can be converted, and then some things may just start working.

e OSLib has its defmod tool to write assembler files, which could be updated.

My own OSLib parser is relatively easy to re-target to generate AArch64 code.

56 /80

Decisions

C modules and applications

e Convert them to modern C.

e Recompile to AArch64.

* Use tests for the original code (or write them) to compare the behaviour.

* |'ve spoken about testing modules in detail, which you can find on my site.

* You can find other examples of tests in the riscos-tests repository on GitHub.

* |'ve converted one a few things now, and in general it's not that hard - even if | have had to update the
C library as | go.

57 /80

Decisions

Assembler-only modules

e Re-write modules in C.
¢ Start from the documented API.

e Don't try to convert the assembler implementation unless it's actually required - just do what the API
requires.

* | know this method works, because I've done it for a good chunk of RISC OS.

* Don't perpetuate the insanity by attempting to create a new AArch64 assembler module.
* Write tests as you go and compare the assembler and C implementation.

e RISC OS Pyromaniac has many tests that can be reused.

* Release versions of the module as you go for people to test.

e Eventually, commit to only the maintainable C version.

e Julie Stamp can probably give good advice on how to do this.

58 / 80

5. A look at 64 bit RISC OS code

_'.

64 bit RISC OS code

Utility code

STP x29, x30, [sp, #-16]!
MOV x3, x1

MOV x10, #0S WriteS

sSvC #0

.asciz "Hello
.balign 4

LDRB wl, [x3]

ADR X2, message world

CMP wl, #0

CSEL x0, x2, %3, eq

MOV x10, #0S Write0

SVC #0

MOV x10, #0S NewLine

svC #0

MOV x0, #0 // no error return
LDP x29, x30, [sp]l, #16

RET

message world:
.asciz "world"

60 / 80

64 bit RISC OS code

Executing the code

We can run the code with:

pyrodev --command hello world

... and we can debug it with:

pyrodev --command hello world --boot-debug trace

61 /80

Hello world utility demo

62 /80

64 bit RISC OS code
C code (1)

e That utility was largely just to show how you can write utilities and what the code looks like.
e We should be writing C code, though, so let's look at a C hello world program.

* This program does a little more than utility.

63 /80

64 bit RISC OS code
C code (2)

f##############*##########################*################*########

* File: hello world printf

* Purpose: Showing that Printf and the C library work
* Author: Gerph

* Date: 10 Aug 2024

**f
#include <stdio.h>

int main(int argc, char *argv[])
{
printf("Hello world!\n");
if (argc > 1)
{
printf("Args:\n");
for (int arg=1l; arg<argc; arg++)
{
printf(" %s\n", argv[arg]);

}

printf("C library:\n");
printf("%s", clib version());
return 0;

64 / 80

Hello world C demo

65 /80

64 bit RISC OS code
C code (3)

66 / 80

Hello world!
Args:
whee
C library:
C library/64
GerphCore vsn 0.01 (10 Aug 2024)

e That shows that we're able to run the programs in a sensible way.

* [t might not be too interesting, but I've ensured that the C library reports itself with the defined format
for version extraction.

* The qualifier for the library is given as /64, since | wanted to differentate it from the others - this also
means that the jmpbuf is a different layout.

e This follows the pattern established in:
https://www.riscos.com/support/developers/riscos6/programmer/extendedc.html

64 bit RISC OS code

More example programs

* Hello world was the first RISC OS 64 program.

e |t proved that the system worked.
e Validation of the way that RISC OS could run things in AArch64.

* The second program was an animation using the Draw module.
* Which was a nice proof that the interfaces were usable in the new environment.

* The third program was a little more challenging...

67 /80

RISC OS 64 bit programs 2 and 3 demo

64 bit RISC OS code

When things go wrong (1)

e RISC OS Pyromaniac can report similar information for AArch64 to that for 32 bit.
* Exceptions aren't properly handled just yet, though, so it's not quite as useful as you might like.
e However it's still enough to get a useful trace when something breaks.

* My crash program, tries to print a string at &9876543, which causes an abort.

69 / 80

64 bit RISC OS code

When things go wrong (2)

70/ 80

==== Begin exception report ====

Exception triggered: Exception 'Data Abort'

Fault

Fault
x0
x4
x8
x12
x16
x20
%24
%28

sp

address :
status:

&00000000,
&00000000,
&00000000,
&00000000,
&00000000,
&0410944c,
&00000000,
&00000000,
&00107£20,

CPSR= &00000010
Locations:

x20 -> "crash,ff8 " in DA 'System heap'

x29 -> [&00107fa0, &00000000, &000083d0, &00000000] in

lr is DA 'Exception vectors'

pc is DA 'RApplication Space': Function myprint+&8

C backtrace:

x1
x5
x9
x13
x17
x21
x25
x29

rc

: USR-32 ARM fi ae gvczn

&00000000
Read, Fault status &0

&09876543,

= &00000001,

&00000000,
&00000000,
&00000000,
&00000000,
&00000000,
&00107f£20,
&00008214

8214 function print many

83d0 function main

8660 function _ main

X2
X6
x10
x14
x18
x22
%26
1r

&Efff£££d8,
&00000000,
&00000003,
&00000000,
&00000000,
&00000000,
&00000000,
&E£££0090,

x3

x7

x11
x15
x19
x23
x27
XZr

&00000001
= &00000000
= &00000000
= &00000000
= &00000001
= &00000000
= &00000000
= &00000000

DA 'Application Space'

64 bit RISC OS code

"Show me the source code!"

e All these example programs are built using GCC 11 for AArch64.
* They're cross compiled inside a docker container.

* There is a little bit of magic to make things work in the way that RISC OS expects - headers and static
linkages.

* They're all publicly available on GitHub:

e https://github.com/gerph/riscos64-simple-binaries/ (includes C library)
* https://github.com/gerph/riscos64-mfoot-chuckieegg/

* They have their own C library.

e |t's pretty simplistic, but you can see it is sufficient to run these demos.

71/80

64 bit RISC OS code

And there's more...

* The first few examples were custom, but ChuckieEgg was written by someone else and converted to 64

bit.
* |t shows that an application that you might know can be made to work - and it didn't take that long.
e Chuckie egg's port took 7 hours.
* Most of that time was writing the C library.

* An hour of it was realising that I'd implemented _kernel swi wrongly.

Are those applications enough to show that 64 bit RISC OS isn't so hard to get working if you have the
inclination ?

72 /80

64 bit RISC OS code

And there's more...

* Yes, those of you who have seen my presentations before will know what's coming.

73 /80

64 bit RISC OS code

And there's more...

* Yes, those of you who have seen my presentations before will know what's coming.

e This entire presentation was running on RISC OS Pyromaniac in my presentation tool compiled for
AArch64.

74 /80

64 bit RISC OS code

And there's more...

* Yes, those of you who have seen my presentations before will know what's coming.

e This entire presentation was running on RISC OS Pyromaniac in my presentation tool compiled for
AArch64.

* The ImageFileRender module was also ported to AArch64 and is providing the images for the
presentation.

75 /80

64 bit RISC OS code

And there's more...

* Yes, those of you who have seen my presentations before will know what's coming.

e This entire presentation was running on RISC OS Pyromaniac in my presentation tool compiled for
AArch64.

* The ImageFileRender module was also ported to AArch64 and is providing the images for the
presentation.

s that enough to show that 64 bit RISC OS code can be produced from original applications?

76 /80

Final 64 bit demo

6. Conclusion

78 /80

_'.

Conclusion
We've talked a little while about 64 bit RISC OS.

79 /80

e What itis
e What's different.

e What problems we have.
* How we can deal with some of those problems.

* Some examples of 64 bit RISC OS code running.

Questions

I'll take any questions that people have.
Slides and Info: http://presentation.riscos.online/64 bit/

80 / 80

