Building for RISC OS, Online

and what makes it tick
Gerph, November 2020

0/120

Building for RISC OS, Online

and what makes it tick

0/120

0. Introduction

November
2020

0. Introduction.
Good evening!
1 don't know how this talk will go over. But | hope that it will be interesting, and maybe a little surprising. So, let’s go...

1/120 &

Introduction
How I'll do this talk

* Lots of technology, some of which may be alien to you.
* The talk is split into 5 sections, with a chance for some questions between them.
* Slides will be available at the end, together with some other resources.

* |'l[l take questions at the end for as long as people want.

&

2/120

Introduction
How I'll do this talk

There are a lot of technologies and features that I'll talk about. I'll call them out as | come to them. Some of what I'm talking about may not be familiar to RISC OS users.
They may be much more common to users outside of RISC OS. If there's something you don't understand, and you feel you needs clarification, ask a question in the chat

if you can. Someone else might be able to answer, or | may be able to address it immediately.
At the end of each section I'm going to have a short break to answer questions on that section. This should give us a chance to talk about that section’s topics without

getting too far ahead and people being completely lost.
At the end of the talk, these slides and a bunch of links to resources will be made available.

2/120

Introduction
What we'll talk about

1. Some background.

2. What JFPatch-as-a-service is.
3. How it works.

4. What powers it.

5. Conclusions.

3/120

Introduction
What we'll talk about

There are 5 sections to the talk -

* a little bit of background

* a discussion of what JFPatch-as-a-service is and what you can do with it
* a very light dive into how that service works,

* a look at the system that powers everything,

« and finally some conclusions.

At the end of the talk I'll take questions on the subjects that have been covered here, for as long as people want to stick around.

37120

1. Background

1. Background

To look at the background we jump back about a year and a half, which will set the scene...

47120 &

Background

Who am I?

* A RISC OS architect and engineer, who's been away from the community for about 15 years.

* | used to do a lot of things with RISC OS, which you can read about on my site if you're interested -

gerph.org/riscos

* I'm not going to talk about that past here.
* | would like to think that | probably know RISC OS in design and execution better than anyone.

5/120

Background
Who am 1?2

You might know me as Justin Fletcher, or gerph. | changed my name a few years ago, and | use gerph where | want some continuity.

I'm a RISC OS architect, and in my day job, I'm a software engineer. I've worked with all of RISC OS from chip initialisation through to the applications and development
tools. I'm pretty confident | know it better than most, even after 15 years away. Plus, as | will talk about, I've worked on many of the RISC OS interfaces more recently,
which makes them more familiar.

If you want to know more about my past, the RISC OS Rambles on my website talk about it in much more detail.

5/120

Background
Dear gosh, why?

* What do | want to do with RISC OS and why?

* Let's make something for me, because | can.

6/120

Background
Dear gosh why?

So why did | start doing RISC OS things again?

Well, about a year and a half ago, | began to understand that | was very unhappy. | didn’t have anything that focused me. | didn’t work on RISC OS things because when |
do, | get angry and upset. And then I'm useless for days. So | stayed away.

I've tried to deal with that, but things still set me off. Even little things can be a problem for me - | wrote the Rambles to try to be a cathartic release, but it wasn’t
completely successful. So | stayed away from the RISC OS world.

I have regular counselling, and | believe that it's been working - because | realised, about a year and a half ago, that there was something | could do.

| realised that | enjoy working with RISC OS, but | don't enjoy the RISC OS community. I'm not intending to offend anyone here by that, but that’s what's debilitating for
me. Stopping myself from doing things with RISC OS, because | understand how badly it affects me, has been a way of coping. But | realised that | can do RISC OS things
for myself, and not care about whether anyone else sees them. Just doing it because | enjoy it.

Well, wow. This was lightbulb moment for me.

That's why I’'m doing this talk - because I'm really proud of that realisation. | can do things because | enjoy them, not because | feel | have to prove things to people.
That's what this talk is. It's my way of saying "this is what, most nights, makes laugh when | go to bed, chuckling ‘this is f'ing nuts’, ‘look how cute that is’.
JFPatch-as-a-service is the bit I've made available to the world, but the rest ... we'll get to that.

6/120

Background
So, you want to use RISC OS, but...

* Development on RISC OS is tedious

* The tools aren't great but they only run on RISC OS... and | don't have a RISC OS system (other
than RPCEmu)

e RISC OS testing is awful

* Most RISC OS projects do ad-hoc testing, rely on users; no automation

* RISC OS is awful for testing

* If something goes wrong, you need to hard reboot; no isolation; no security

7/120

Background
So you want to use RISC OS but...

So | decided | would dust off some old source code and try to build some things. But there's some problems with that.
* Firstly, RISC OS development tools are a bit poor, and they only run on RISC OS. | don't have a RISC OS system. Not only that, but if you've worked with DDT,
the debugger, you'll know how much like russian roulette that is - if you see the insides of it you'll find out why.
* The next issue with RISC OS development is that projects on RISC OS have awful testing in my experience. That includes my own.
Ad-hoc testing is the way to that most things were done and the mantra of 'it's compiled? ship it!' seems to apply. Maybe that's not true for developers these days, but that
was how it was. | wanted to be able to address that, if | was to do anything substantial.
* The final issue is that RISC OS itself is not a good system for running tests on. It's cooperative and single tasking. Generally in testing the 'System Under Test' does

not cooperate - it will hang, crash, and leak memory like it's going out of style. And on RISC OS that commonly means its time to reboot.

Plus there's no isolation, so even if it doesn't ook like the system is broken, it might have corrupted something important. | needed to do something about that.

7/120

Background

How does the real world do things?

* Source control !

* Cross compiling

* Managed development environments
» Automated testing of changes

e Feature and regression testing

e Fleets of systems available for use

8/120

Background
How does the real world do things?

Ok, so we've understood some problems; let's see how the real world does things.
These are just a few of the things that in the real world we expect to have, and which I'm going to look at.
There's:

* Source control

* Compiling code for RISC OS from other systems

* Controlling your development environment

* Automated testing in different ways

* And having fleets of machines to make things faster

Let's look at each of these and see how | addressed them.

8/120

Background

How can | do this? (1)

Source control:

* Move things to Git, because CVS is so very painful.

9/120

Background
How can | do this? (1)

My own source had been in CVS for many years, and in about 2016 | moved everything - even my own ancient RISC OS projects - into git. | have a large number of
python and perl projects managed in git as well. It's so much easier to work with than CVS. And even for that one little script you're just tinkering with, you can create a
repository for it.

Git is a source control system that is intended for large scale distributed use, but which works even for a single user working with a single file.

It doesn't need a server, but if you want to share code that's one way you can do it. GitHub is one of the best known systems for storing repositories, which people will
almost certainly have heard of. However, at the time GitHub wasn't so friendly to private projects, and even still, | didn't want my projects going off site. So | chose to use

GitLab - it's installed on my server, and... it's pretty great. Oh, and it's free.

9/120

Background

How can | do this? (1)

Source control:

* Move things to Git, because CVS is so very painful.

Tech: GitLab, running on my linux server - it's publicly accessible, but most of the 1000-odd projects are
private.

@ Project averview O« #sw o Yrem o
oot
LELT 30 cammits M 28ranches < 0Tags 0 1MBFies 1.8 MB Starage
Releasas RISC OS assembler for modules and patches.,
B Repository
- o 1+~ ey | roame | [weare | [+
1% Merge Requests 0 Add axport of the Libraries. -~) denaa B
Charies Fergusen authored & days sg0
¢ cijco
- B CHANGELOG [CUCD configuration @ AJGREADME [ASGUCENSE () AGd CONTRIBUTING 1 ASd Kubermtes chuster
% Openat
= Name Last commit Last updane
& LFRatch Add calls CSCL Horary 1 mentn aga
0w
& crosscompie & days ag
% snippe
I test year ago
B M
etz your ago
£ settings
& test3 year aga
% Colapse sideba oot 5 days ago

10/120

So GitLab is the tech that | use for my source control.
| was amused - but not at all surprised - that ROOL selected GitLab as their server system, a few years ago.

10/120

Background

How can | do this? (2)

Cross compiling:

11/120

Background
How can | do this? (2)

So I've got a way of storing and managing the source, but | want to at least be able to compile and assemble things if I'm going to work on them.
It's all well and good being able to build RISC OS components for testing on macOS by stubbing libraries, but | want to be able to build things that will run on RISC OS.

117120 &

Background

How can | do this? (2)

Cross compiling:
* Already had the toolchain ported to 32bit Linux and Windows, back in 2005.

Tech: Port the toolchain to 64bit Linux and 64bit macOS.

charles@laputa ~/pro/RO/mod/ris/Sou/Des/TaskWindow (master)> rm o*/*; riscos-amu
BUILD32=1 ram

riscos-objasm -Stamp -quit -I@ -predefine "BUILD RAM SETL {TRUE}" -apcs
3/32/fpe2/swst/fp -predefine "BUILD ZM SETL {TRUE}" -predefine "No26bitCode SETL {TRUE}"
-predefine "No32bitCode SETL {FALSE}" -predefine "APCS SETS \"APCS-32\"" -o o0z32/Taskman
s/Taskman

ARM AOF Macro Assembler 3.32 (JRF:3.32.38) [07 Mar 2006]
Unrecognised APCS qualifier /fpe2

Unrecognised APCS qualifier /fp

MyDomain = 0000058C

Deprecated form of PSR field specifier used (use _cxsf)
riscos-link -rmf -rescan -C++ -o rm32/TaskWindow,ffa o0z32.Taskman
TaskWindow: Module built {RAM}

12/120

Back in 2005 1 had cross-compiling working for RISC OS, and most of the last version of RISC OS that | worked on were actually built on Linux.
However, that was all for 32bit Linux and Windows. So | ported the toolchain to work in 64bit compilers.

It wasn't actually 'simple', and I still see bugs now and then for cases I've missed. The authors loved their bitfields and packing structures into different types. But with a
little work, the toolchain was made to compile RISC OS components on macOS.
All the cross-compiling tools have the prefix 'riscos hyphen' to make it easier to distinguish them. So you can see that 'riscos-amu', 'riscos-objasm', and 'riscos-link' were
invoked in this example.
| needed to test the C compiler with some nice example code to see that it fared well. | had a lot of my own code, but using random stuff from other people to throw at
the compiler highlights many problems you wouldn't otherwise find.

127120

&

Background

How can | do this? (2)

Cross compiling:
* Already had the toolchain ported to 32bit Linux and Windows, back in 2005.

Tech: Port the toolchain to 64bit Linux and 64bit macOS.
Tech: Tool to extract example code from 'Rosetta Code' for testing (https://github.com/gerph/rosettacode)

&

137120

So I wrote a small library that downloaded all the C code from the Rosetta Code website. If you don't know Rosetta Code, it's a website containing solutions for many

problems, in many different programming languages.
And having downloaded all the programs, | ran them through the C compiler to see whether it crashed or not.

137120

Background

How can | do this? (3)

Managed environments:
* How do | get my toolchain? find my libraries? store built components?

14/120

Background
How can | do this? (3)

So the tools for building exist, and | have headers and libraries that | can use to link against. But | need to get them to my machine.
Traditionally you downloaded and installed a package that gave you the build tools. And then you used them until the next time you needed to upgrade. In modern

development, these tools and libraries change rapidly.

And even if they don't, you want more control over what exactly goes into building your latest product.

This is usually managed through a software repository that holds all those components that you might want - your toolchain, libraries, documentation, even full releases.
These can be stored in the repository and retrieved in managed ways. This ensure that what you're doing is reproducible, because everything that went into making it is

known, and can be used again.

147120

